
FICE: Fovea-Inspired Closed-Loop 

Edge-AI System for Enhanced Capsule 

Endoscopy Imaging  

 

Tiancheng Cao1, Hengming Zhang1, Chen Shen1, Hen-Wei Huang1,2 
1School of Electrical and Electronic Engineering, Nanyang Technological University, Republic of Singapore 

2Lee Kong Chian School of Medicine, Nanyang Technological University, Republic of Singapore 

 

Email: tiancheng.cao@ntu.edu.sg 

 

Abstract— The wireless feature of a capsule endoscope enables 

non-invasive gut imaging, but it results in limited power supply, 

poor imaging quality, and low frame rate. This paper proposes 

a Fovea-Inspired Closed-Loop Edge-AI (FICE) system to 

address these constraints without compromising the diagnostic 

quality. Specifically, we integrate a lightweight transformer-

based model for onboard lesion detection and a Gated Corner 

Proposal Network for precise region-of-interest (ROI) 

localization. Once lesions are flagged, the system captures and 

transmits high-resolution ROI images while maintaining low-

resolution frames elsewhere, effectively conserving energy and 

bandwidth. Key findings using the HyperKvasir and Kvasir-

SEG datasets demonstrate a lesion detection recall and precision 

of 99.88% and 99.40%, respectively, along with a mean 

Intersection over Union (mIOU) of 0.804 for bounding box 

localization, while maintaining a processing speed of 9.58 fps at 

320-pixel density under a maximum data transmission rate of 

1248 KBps. The frame rate and pixel density are improved by 

five and three folds, respectively, compared to the state-of-the 

art capsule endoscope. This closed-loop approach mimics the 

human eye’s fovea and saccadic movements, balancing the need 

for detailed imaging of critical areas with overall resource 

constraints.   
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I. INTRODUCTION 

Wireless capsule endoscopy (WCE) has revolutionized 
gastrointestinal diagnostics by providing a non-invasive 
method to visualize the small intestine [1, 2]. Patients swallow 
a pill-sized device equipped with a miniature camera that 
captures images as it naturally moves through the 
gastrointestinal tract, greatly improving the detection and 
management of conditions such as obscure gastrointestinal 
bleeding, Crohn disease, ulcerative colitis, and small intestinal 
tumors. Recent advancements have focused on enhancing 
image quality and diagnostic accuracy through improvements 
in camera technology, data transmission, and image 
processing algorithms [3-5]. However, inherent trade-offs 
persist between image quality, frame rate, and battery life due 
to the limited transmission bandwidth and power resources 
available within the capsule. Addressing these challenges 

necessitates innovative approaches that optimize these 
parameters without compromising device performance. 

Recent research has explored various solutions to address 
these challenges, including energy-efficient hardware designs 
[6, 7], advanced image compression algorithms [8], and frame 
rate control mechanisms [9]. Energy-efficient hardware, such 
as low-power CMOS image sensors [7], aims to reduce power 
consumption within the capsule; however, the trade-off in 
processing capability makes it difficult to maintain the high 
frame rate required for accurate diagnostics. Advanced image 
compression algorithms [8] help decrease the amount of data 
transmitted, conserving energy, but they can lead to a loss of 
image quality. Adaptive frame rate control [9] adjusts the 
frame rate based on movement but lacks specificity in 
targeting lesions. These unresolved issues highlight the need 
for a solution that simultaneously optimizes diagnostic 
accuracy and power consumption. 

The human eye is one of the most efficient imaging 
systems, featuring a unique characteristic: only a small area 
called the fovea is perceived in high resolution and vivid color. 
This mechanism cooperated with visual integration and 
saccade optimizes visual perception while reducing overall 
energy consumption. Inspired by this and advanced research 
on biomedical edge intelligence [10, 11], we have 
significantly revised the WCE system by integrating a high-
resolution (5 MP pixels) CMOS sensor that is 40 folds higher 
than a PillCam (Medtronic). In this paper, we propose a fovea-
inspired closed-loop edge-AI (FICE) system that performs 
lesion detection within the capsule using edge computing. 
When potential abnormalities are detected, compressed 
images are transmitted to an external processor, where a 
specially designed AI algorithm combined with conventional 
image processing, Gated Corner Proposal Network, 
determines the precise location of the target area. The capsule 
then combines high-resolution images of the lesion with low-
resolution backgrounds to create interpolated frames 
transmitted at relatively high speeds. This approach enables 
high-quality, high-frame-rate transmission for critical areas to 
achieve accurate diagnosis while reducing the frame rate and 
power consumption for healthy regions.  Validation using the 
HyperKvasir Dataset [12] demonstrates that the proposed 
system achieves an onboard diagnostic recall and precision of 
99.88% and 99.40%, respectively, along with a Region of 
Interest (ROI) detection mean Intersection over Union (mIOU) 
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of 0.804, while achieving 9.58 fps with 320 pixel density 
under a maximum data transmission rate of 1248 KBps. This 
innovative approach simultaneously optimizes image quality, 
frame rate, and power consumption, addressing longstanding 
trade-offs in capsule endoscopy and enhancing diagnostic 
accuracy without compromising device performance. 

The rest of the paper is organized as follows. Section II 
provides a comprehensive overview of the proposed fovea-
inspired closed-loop edge-AI (FICE) system. Section III 
presents the structures of lesion detection algorithm and the 
proposed Gated Corner Proposal Network. Section IV  
presents the results on HyperKvasir Dataset and Kvasir SEG 
Dataset while Section V concludes the paper.  

II. FOVEA-INSPIRED CLOSED-LOOP EDGE-AI (FICE) SYSTEM  

A. FICE Architecture Overview 

The imaging process of the human eye is illustrated in Fig. 
1(a), where the fovea is a small central region of the retina 
densely packed with photoreceptor cells, allowing it to capture 
images in high resolution and vivid color. While the fovea 
processes detailed information in the center of the visual field, 
the surrounding regions provide lower-resolution input, which 
the brain integrates into a coherent image with a sharp central 
focus and less-detailed periphery.  

Inspired by this, we propose the FICE system, with the 
data flow illustrated in Fig. 1(b). After the image sensor 
captures the initial image, it undergoes JPEG compression and 
is processed by onboard edge AI to determine the presence of 
potential lesions. If no lesion is detected, the system transmits 
images at a lower frame rate to conserve energy. If a lesion is 
identified, the compressed image is further downsampled and 
transmitted to an external computer for Region of Interest 
(ROI) detection.  

The external system utilizes the proposed Gated U-Net to 
extract key point features, followed by the Gated Corner 
Block to predict the top-left and bottom-right corners of the 
lesion, thereby defining a bounding box. This bounding box 
serves as feedback to the image sensor, directing it to capture 

a high-resolution image of the identified Region of Interest 
(ROI). The high-resolution ROI image is then transmitted and 
seamlessly integrated with the low-resolution background on 
the external computer, where fovea imaging interpolation is 
produced as the final output. This synthesized output 
prioritizes high-resolution details in critical regions while 
maintaining lower resolution in less important areas, 
achieving an optimal balance between diagnostic accuracy, 
energy efficiency, and transmission frame rate. 

B. Lightweight Edge AI for Lesion Detection 

Onboard edge AI is essential in this system for minimizing 

data transmission, optimizing power consumption, and 

enabling real-time adaptation. However, conventional AI 

algorithms, with their extensive parameters and 

computational demands, are not well-suited for this 

application. To address this, we adapted a lightweight 

transformer-based algorithm, PoolFormer [13], which has 

shown significant success in prior edge AI implementations, 

tailoring it to meet the specific requirements of this system. 

6-layer ParaPoolFormer is adapted here with only 45KB 

parameters and achieves 99.88% lesion detection recall and 

99.40% precision on HyperKvasir dataset. During the 

training of the lesion detection model, 1,000 lesion images 

and 1,000 non-lesion images are randomly sampled from 

HyperKvasir. The resulting dataset is then split into training, 

 
Fig. 2. Scan mechanism based on ROI image feedback. 

    

 
                                             (a)                                                                                                                                        (b) 
Fig. 1. The proposed fovea-inspired closed-loop edge-AI (FICE) system. The "000 Capsule" integrates an OV5640 camera sensor, JPEG compression, 

and edge-AI lesion detection capabilities within an STM32 microcontroller. The capsule detects lesions in real-time and transmits region-of-interest (ROI) 

data or full field-of-view (FOV) data based on lesion presence. A closed-loop mechanism enables the PC-based processing module, which utilizes image 

reconstruction and lesion analysis, to guide the sensor configuration. 



validation, and test sets with a ratio of 8:1:1. By processing 

images locally, it reduces the need to transmit large volumes 

of data and conserving energy. 

As shown in Fig. 1(b), the onboard lesion detection model 

not only identifies the presence of lesions in the current frame, 

but also dynamically adjusts the camera’s frame rate and 

activates the off-board localization model. When no lesion is 

detected in the current frame, the OV5640 captures a full 

FOV image at a low resolution of 500×500, which is then 

wirelessly transmitted. Simultaneously, the frame rate is 

reduced to below 1 fps. According to [14], the peristaltic 

frequency of the gastrointestinal tract ranges from 0.03 to 0.2 

contractions per second, making a frame rate of 1 fps 

sufficient to capture relevant motion. If a lesion is detected in 

the low-resolution FOV image, the onboard lesion detection 

model triggers the off-board localization model to generate 

the ROI coordinates. Simultaneously, the OV5640 camera is 

configured to its native 5MP resolution and captures an image 

of the ROI. The MCU calculates the number of pixels in the 

ROI, estimates the image size, and adjusts the OV5640 frame 

rate according to the maximum bandwidth available from the 

wireless communication module. 

C. Visual Integration and Saccades by ROI Feedback 

Building on the fovea mechanism, the brain visual 

integration capability continuously overlays and combines 

high-resolution images captured by the fovea with 

surrounding background information, stitching together 

successive high-resolution focal points into a complete visual 

scene. In the absence of targets in the ROI, the brain initiates 

saccades, rapid eye movements, to scan the environment, 

bringing new ROI into the visual field to acquire more 

information. 

Inspired by this efficient visual mechanism, a novel ROI-

based feedback design is proposed, as illustrated in Fig. 2. 

Building on the process outlined in Section II.A, the first 

interpolated frame generated by the system serves as the 

baseline for feedback. Due to the natural movement of the 

capsule endoscope within the gastrointestinal tract, driven by 

peristalsis, the same ROI area set by the image sensor 

captures different image details over time. As the image 

sensor continues to collect new ROI data, this information is 

used to generate subsequent interpolated frames, which are 

then compared to the baseline. By comparing the newly 

acquired ROI data with the baseline, the system performs 

visual integration, stitching together the ROI regions to form 

a more comprehensive image over time. 

This process continues until the overlap between the newly 

captured ROI and the baseline ROI falls below a predefined 

threshold, set at 0.5 in this study. At this point, the system 

provides feedback to the image sensor, prompting it to switch 

back to full-view image capture to re-detect lesion areas, 

mimicking the saccadic movement of the human eye to 

rapidly scan new regions of the visual field and refocus on 

areas of interest, thereby closing the loop.  

This dynamic feedback mechanism leverages ROI-based 

feedback and visual integration to continuously update and 

incorporate high-resolution information while adapting to 

changes in the capsule position and environment. By 

dynamically stitching high-resolution ROI data and making 

adjustments only when necessary, the system eliminates the 

need for frequent reconfiguration of the image sensor. This 

approach ensures efficient adaptation to capsule movement 

while maintaining high-quality imaging for accurate and 

reliable diagnosis. 

III. GATED CORNER PROPOSAL NETWORK 

In this work, only bounding box detection is needed, and 
most existing object detection algorithms, such as YOLO, are 
overly computationally intensive. Therefore, we adopt a 
strategy inspired by the CornerNet architecture [15], dividing 
the process into feature extraction and corner proposal as 
illustrated in Fig. 3.  

A. Conventional Image Preprocessing 

RGB images combine both color and brightness 

information, making it challenging for algorithms to isolate 

critical structural details like texture, edges, and shading 

necessary for lesion identification. This often reduces 

sensitivity to subtle variations in brightness and contrast, 

which are key indicators of abnormalities in medical imaging. 

 
Fig. 3. The proposed Gated U-Net feature extraction with 
preprocessing. 

 
  (a) 

 
   (b) 

Fig. 4. (a) The structure of Gated CNN block. (b) The structure of Gated 

Corner Block. 



To address this challenge, once the capsule endoscope 

transmits compressed images of suspected lesions, the system 

undergoes several preprocessing steps to enhance ROI 

detection. The image is first transformed into the Lab color 

space, where the luminance, L channel, is extracted to focus 

specifically on brightness and contrast variations, which are 

often more indicative of structural abnormalities. Sobel edge 

detection is then applied to the L channel to highlight 

significant edges and transitions, such as lesion boundaries or 

structural changes in the gastrointestinal tract, providing 

valuable spatial cues for accurate ROI localization. Finally, 

as shown in Fig. 3, the edge-detected L channel is 

concatenated with the original RGB and L images to form the 

input for the neural network, effectively integrating high-

level contextual information with low-level structural details 

for improved accuracy and robustness in ROI detection. 

B. Gated U-Net Feature Extraction 

Compared to the Hourglass module used in CornerNet, the 
U-Net architecture, as illustrated in Fig. 3, is employed for 
feature extraction due to its skip connections between the 
encoder and decoder layers [16]. These skip connections 
facilitate the transfer of detailed spatial information to the 
upsampling path, preserving fine-grained details and 
enhancing localization accuracy. Moreover, U-Net 
effectively captures features at multiple scales, making it 
well-suited for both localization and segmentation tasks, 
which leads to more precise bounding box detection in 
medical imaging. 

Further improvement is achieved by replacing the standard 
U-Net blocks with GatedCNN blocks shown in Fig. 4(a) [17]. 
GatedCNN blocks introduce learnable gating mechanisms 
that adaptively allow relevant features to pass through while 
filtering out unnecessary information. The mathematical 
formulation is described as  

𝑔, 𝑖, 𝑐 =  𝑠𝑝𝑙𝑖𝑡(𝐹𝐶1(𝐵𝑁(𝑥))) 

𝑦 = 𝑅𝑒𝐿𝑈(𝑔) ⊙ 𝑐𝑎𝑡(𝑖, 𝑐𝑜𝑛𝑣(𝑐)) 

𝑧 = 𝑥 + 𝐹𝐶2(𝑦) 

where 𝑥  is the input features, z is the output features and 
𝑔, 𝑖, 𝑐  are gate features, non-convolutional features, and 
convolutional features, respectively. 𝐵𝑁(∙)  is the batch 
normalization layer, 𝐹𝐶(∙)  is the fully-connected layer, 
𝑐𝑜𝑛𝑣(∙)  is the convolutional layer and 𝑅𝑒𝐿𝑈(∙)  is the 
activation layer. 𝑠𝑝𝑙𝑖𝑡(∙)  and 𝑐𝑎𝑡(∙)  are the split and 
concatenate operations. 

This enhances the network ability to focus on lesion areas, 
improving the accuracy of bounding box detection. Moreover, 
GatedCNN blocks reduce noise and irrelevant background 
features, which is particularly important in medical imaging 
where images often contain artifacts or non-informative 
regions, resulting in a cleaner and more reliable feature 
representation. 

C. Gated Corner Block 

The corner block incorporates the concept of corner 
pooling [14], which captures contextual information by 
pooling features along horizontal and vertical directions to 
emphasize the edges of objects. As illustrated in Fig. 4(b), 
this structure is implemented as the gated corner block.  

To efficiently determine corner positions, we modified the 
output heatmap to generate only the necessary components: a 
heatmap for the top-left corner, offsets in the x and y 
directions, and similarly for the bottom-right corner. This 
results in a total of six output channels for the heatmap, 
optimized for precise and rapid corner localization.  

IV. SIMULATION RESULTS AND DISCUSSION 

We developed a prototype PCB for a wireless capsule 
endoscope to verify the functionality and dimensions of our 
system. The maximum diameter of the entire system is 10 
mm, requiring all components on the PCB to fit within this 
constraint. The system is primarily composed of four parts: a 
high-resolution camera (OV5640), a Bluetooth BLE wireless 
communication module (NRF52840), a high-performance 
MCU (STM32H743 series), and a wireless power reception 
coil.  

We chose the 5MP OV5640 to provide a higher pixel 
density under the same field of view (FOV) and viewing 
distance. This allows us to leverage our proposed retina-like 
ROI algorithm to enhance the resolution of the lesion areas 
without increasing the demand for wireless bandwidth. The 
MCU we selected is the STM32H743. This MCU is equipped 
with an 8-bit JPEG codec module, enabling real-time 
compression of images captured by the OV5640 to reduce 
bandwidth requirements. Additionally, it features 1MB of on-
chip cache, providing sufficient resources for running the 
retina-like ROI algorithm and a lightweight lesion detection 
model. The NRF52840 module is a low-power Bluetooth 
communication module with a compact package size of just 
4 × 4 mm. Based on our simulation validation, it can achieve 
a maximum data transmission rate of 1248 KBps for both 
image and control signals. All simulations were conducted 
based on the aforementioned hardware resources. 

  [18] [19] Proposed 

AI model DSCNN Mask R-CNN 
PoolFormer  + 

GCRN 

Input Size 240*240*3 512*512*3 500*500*3 

Onboard 

Memory 

Usage 

3.2MB NR 0.54MB 

Quantization INT8 NA INT8 

FOV (degree) 140 130 160 

Pixel Density 
(PPD) 

91.4 98.5 320 

Frame Rate 
(fps) 

2 2 9.58 

RF module BLE BLE BLE 

Bandwidth 

Requirement 
60Kpbs 273Kbps 1248Kbps 

N.R.: Not reported  

Fig. 5. The comparative analysis of the relative state-of-the-art capsule 

endoscope solutions. 



The neural network training was conducted using two 
specified models, leveraging an Intel 13600KF CPU and an 
RTX 3060Ti GDDR6X GPU with the PyTorch framework. 
For the lesion classification model, the primary focus was on 
recall, as correctly identifying positive cases is critical in 
medical imaging applications. The edge detection model 
achieved a recall of 99.88%, demonstrating its effectiveness 
in accurately identifying potential lesions. The precision is 
99.40%. For the ROI detection model, the evaluation 
emphasized the overlap ratio between the predicted and 
ground truth regio ns. The overall mean Intersection over 
Union (mIOU) for the system reached 0.804, further 
validating its robustness and accuracy in both lesion detection 
and ROI localization tasks. 

To benchmark the proposed system, we compared its 
simulation performance against state-of-the-art capsule 
endoscope solutions, as shown in Fig. 5. As depicted in the 
figure, our algorithm and onboard lesion detection model 
require only 0.54 MB of memory, which is 83.125% smaller 
than the system in [18]. This allows our entire system to 
operate based on near-memory computing, eliminating the 
need for DRAM access and, consequently, reducing both 
system latency and power consumption. Furthermore, with 
the integration of a high-resolution CMOS sensor, our 
system's pixel density is approximately three times greater 
than that of the systems in [18] and [19], providing 
significantly clearer visuals. The enhanced resolution of the 
lesion areas will greatly improve diagnostic efficiency and 
accuracy for healthcare professionals. Thanks to the closed-
loop ROI algorithm, we can prioritize imaging and data 
transmission of the lesion regions with higher pixel density. 
Under the assumption that the lesion region is confined 
within a 500 × 500 pixel box, the entire system can achieve 
9.58 fps, leveraging the maximum achievable data rate of the 
NRF52840.  

The proposed Fovea-Inspired Closed-Loop Edge-AI 
(FICE) system addresses longstanding challenges in wireless 
capsule endoscopy by significantly improving image quality, 
frame rate, and power efficiency. Validated through the 
HyperKvasir dataset, the system achieved a diagnostic recall 
and precision of 99.88% and 99.40% respectively with edge-
AI and a mean Intersection over Union (mIOU) of 0.804 in 
Kvasir SEG dataset, demonstrating its effectiveness in 
optimizing diagnostic precision. Compared to prior solutions, 
which often compromise image quality or frame rate to 
conserve energy, the FICE system leverages lightweight 
edge-AI and Gated Corner Proposal Networks to deliver 
superior lesion localization and energy efficiency. This 
advancement enhances the effectiveness of non-invasive 
gastrointestinal diagnostics and surgeries, while also paving 
the way for more advanced medical solutions. However, 
limitations include the need for further hardware validation, 
reliance on a single dataset, and predefined thresholds that 
may lack flexibility in diverse clinical contexts. Future 
research should expand testing across broader datasets, refine 
the feedback mechanism for greater adaptability, and explore 
real-time clinical implementation to ensure broader 
applicability and reliability. 

V. CONLUSION 

In this work, we introduced a Fovea-Inspired Closed-Loop 
Edge-AI (FICE) system that draws inspiration from the 
human eye’s fovea mechanism and leverages lightweight 
transformer-based onboard lesion detection along with a 
Gated Corner Proposal Network for precise bounding-box 
localization. Our core contribution lies in capturing and 
transmitting high-resolution data selectively when a lesion is 
detected, significantly reducing energy consumption while 
preserving diagnostic accuracy. Experimental results on the 
HyperKvasir  dataset demonstrate a 99.88% recall and a 
precision of 99.40% in lesion detection and an mIOU of 0.804 
for ROI localization, while achieving 9.58 fps with 320 pixel 
density under a maximum data transmission rate of 1248 
KBps, underscoring the system’s reliability and efficiency in 
balancing image resolution, power usage, and transmission 
rate. Beyond improving clinical decision-making by ensuring 
targeted imaging, FICE also sets the stage for more advanced, 
closed-loop WCE solutions that incorporate adaptable AI-
driven feedback. Future research will involve integrating more 
advanced wireless modules, expanding testing to diverse 
datasets, and exploring real-world clinical deployment to 
further validate and refine this innovative approach. 
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