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Abstract— The wireless feature of a capsule endoscope enables
non-invasive gut imaging, but it results in limited power supply,
poor imaging quality, and low frame rate. This paper proposes
a Fovea-Inspired Closed-Loop Edge-Al (FICE) system to
address these constraints without compromising the diagnostic
quality. Specifically, we integrate a lightweight transformer-
based model for onboard lesion detection and a Gated Corner
Proposal Network for precise region-of-interest (ROI)
localization. Once lesions are flagged, the system captures and
transmits high-resolution ROI images while maintaining low-
resolution frames elsewhere, effectively conserving energy and
bandwidth. Key findings using the HyperKvasir and Kvasir-
SEG datasets demonstrate a lesion detection recall and precision
of 99.88% and 99.40%, respectively, along with a mean
Intersection over Union (mIOU) of 0.804 for bounding box
localization, while maintaining a processing speed of 9.58 fps at
320-pixel density under a maximum data transmission rate of
1248 KBps. The frame rate and pixel density are improved by
five and three folds, respectively, compared to the state-of-the
art capsule endoscope. This closed-loop approach mimics the
human eye’s fovea and saccadic movements, balancing the need
for detailed imaging of critical areas with overall resource
constraints.

Keywords —Wireless Capsule Endoscopy, Fovea-Inspired
Imaging, Closed-Loop Edge Al, Lesion Detection

I. INTRODUCTION

Wireless capsule endoscopy (WCE) has revolutionized
gastrointestinal diagnostics by providing a non-invasive
method to visualize the small intestine [1, 2]. Patients swallow
a pill-sized device equipped with a miniature camera that
captures images as it naturally moves through the
gastrointestinal tract, greatly improving the detection and
management of conditions such as obscure gastrointestinal
bleeding, Crohn disease, ulcerative colitis, and small intestinal
tumors. Recent advancements have focused on enhancing
image quality and diagnostic accuracy through improvements
in camera technology, data transmission, and image
processing algorithms [3-5]. However, inherent trade-offs
persist between image quality, frame rate, and battery life due
to the limited transmission bandwidth and power resources
available within the capsule. Addressing these challenges

This work is supported by the Ministry of Education, Singapore, under
the Award No. RG71/24.

necessitates innovative approaches that optimize these
parameters without compromising device performance.

Recent research has explored various solutions to address
these challenges, including energy-efficient hardware designs
[6, 7], advanced image compression algorithms [8], and frame
rate control mechanisms [9]. Energy-efficient hardware, such
as low-power CMOS image sensors [7], aims to reduce power
consumption within the capsule; however, the trade-off in
processing capability makes it difficult to maintain the high
frame rate required for accurate diagnostics. Advanced image
compression algorithms [8] help decrease the amount of data
transmitted, conserving energy, but they can lead to a loss of
image quality. Adaptive frame rate control [9] adjusts the
frame rate based on movement but lacks specificity in
targeting lesions. These unresolved issues highlight the need
for a solution that simultaneously optimizes diagnostic
accuracy and power consumption.

The human eye is one of the most efficient imaging
systems, featuring a unique characteristic: only a small area
called the fovea is perceived in high resolution and vivid color.
This mechanism cooperated with visual integration and
saccade optimizes visual perception while reducing overall
energy consumption. Inspired by this and advanced research
on biomedical edge intelligence [10, 11], we have
significantly revised the WCE system by integrating a high-
resolution (5 MP pixels) CMOS sensor that is 40 folds higher
than a PillCam (Medtronic). In this paper, we propose a fovea-
inspired closed-loop edge-Al (FICE) system that performs
lesion detection within the capsule using edge computing.
When potential abnormalities are detected, compressed
images are transmitted to an external processor, where a
specially designed Al algorithm combined with conventional
image processing, Gated Corner Proposal Network,
determines the precise location of the target area. The capsule
then combines high-resolution images of the lesion with low-
resolution backgrounds to create interpolated frames
transmitted at relatively high speeds. This approach enables
high-quality, high-frame-rate transmission for critical areas to
achieve accurate diagnosis while reducing the frame rate and
power consumption for healthy regions. Validation using the
HyperKvasir Dataset [12] demonstrates that the proposed
system achieves an onboard diagnostic recall and precision of
99.88% and 99.40%, respectively, along with a Region of
Interest (ROI) detection mean Intersection over Union (mIOU)
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Fig. 1. The proposed fovea-inspired closed-loop edge-Al (FICE) system. The "000 Capsule™ integrates an OV5640 camera sensor, JPEG compression,
and edge-Al lesion detection capabilities within an STM32 microcontroller. The capsule detects lesions in real-time and transmits region-of-interest (ROI)
data or full field-of-view (FOV) data based on lesion presence. A closed-loop mechanism enables the PC-based processing module, which utilizes image

reconstruction and lesion analysis, to guide the sensor configuration.

of 0.804, while achieving 9.58 fps with 320 pixel density
under a maximum data transmission rate of 1248 KBps. This
innovative approach simultaneously optimizes image quality,
frame rate, and power consumption, addressing longstanding
trade-offs in capsule endoscopy and enhancing diagnostic
accuracy without compromising device performance.

The rest of the paper is organized as follows. Section Il
provides a comprehensive overview of the proposed fovea-
inspired closed-loop edge-Al (FICE) system. Section Il
presents the structures of lesion detection algorithm and the
proposed Gated Corner Proposal Network. Section 1V
presents the results on HyperKvasir Dataset and Kvasir SEG
Dataset while Section V concludes the paper.

Il. FOVEA-INSPIRED CLOSED-LoOP EDGE-AI (FICE) SYSTEM

A. FICE Architecture Overview

The imaging process of the human eye is illustrated in Fig.
1(a), where the fovea is a small central region of the retina
densely packed with photoreceptor cells, allowing it to capture
images in high resolution and vivid color. While the fovea
processes detailed information in the center of the visual field,
the surrounding regions provide lower-resolution input, which
the brain integrates into a coherent image with a sharp central
focus and less-detailed periphery.

Inspired by this, we propose the FICE system, with the
data flow illustrated in Fig. 1(b). After the image sensor
captures the initial image, it undergoes JPEG compression and
is processed by onboard edge Al to determine the presence of
potential lesions. If no lesion is detected, the system transmits
images at a lower frame rate to conserve energy. If a lesion is
identified, the compressed image is further downsampled and
transmitted to an external computer for Region of Interest
(ROI) detection.

The external system utilizes the proposed Gated U-Net to
extract key point features, followed by the Gated Corner
Block to predict the top-left and bottom-right corners of the
lesion, thereby defining a bounding box. This bounding box
serves as feedback to the image sensor, directing it to capture
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Fig. 2. Scan mechanism based on ROl image feedback.

a high-resolution image of the identified Region of Interest
(ROI). The high-resolution ROI image is then transmitted and
seamlessly integrated with the low-resolution background on
the external computer, where fovea imaging interpolation is
produced as the final output. This synthesized output
prioritizes high-resolution details in critical regions while
maintaining lower resolution in less important areas,
achieving an optimal balance between diagnostic accuracy,
energy efficiency, and transmission frame rate.

B. Lightweight Edge Al for Lesion Detection

Onboard edge Al is essential in this system for minimizing
data transmission, optimizing power consumption, and
enabling real-time adaptation. However, conventional Al
algorithms,  with  their extensive parameters and
computational demands, are not well-suited for this
application. To address this, we adapted a lightweight
transformer-based algorithm, PoolFormer [13], which has
shown significant success in prior edge Al implementations,
tailoring it to meet the specific requirements of this system.
6-layer ParaPoolFormer is adapted here with only 45KB
parameters and achieves 99.88% lesion detection recall and
99.40% precision on HyperKvasir dataset. During the
training of the lesion detection model, 1,000 lesion images
and 1,000 non-lesion images are randomly sampled from
HyperKvasir. The resulting dataset is then split into training,
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preprocessing.

validation, and test sets with a ratio of 8:1:1. By processing
images locally, it reduces the need to transmit large volumes
of data and conserving energy.

As shown in Fig. 1(b), the onboard lesion detection model
not only identifies the presence of lesions in the current frame,
but also dynamically adjusts the camera’s frame rate and
activates the off-board localization model. When no lesion is
detected in the current frame, the OV5640 captures a full
FOV image at a low resolution of 500>600, which is then
wirelessly transmitted. Simultaneously, the frame rate is
reduced to below 1 fps. According to [14], the peristaltic
frequency of the gastrointestinal tract ranges from 0.03 to 0.2
contractions per second, making a frame rate of 1 fps
sufficient to capture relevant motion. If a lesion is detected in
the low-resolution FOV image, the onboard lesion detection
model triggers the off-board localization model to generate
the ROI coordinates. Simultaneously, the OV5640 camera is
configured to its native 5MP resolution and captures an image
of the ROI. The MCU calculates the number of pixels in the
ROI, estimates the image size, and adjusts the OV5640 frame
rate according to the maximum bandwidth available from the
wireless communication module.

C. Visual Integration and Saccades by ROI Feedback

Building on the fovea mechanism, the brain visual
integration capability continuously overlays and combines
high-resolution images captured by the fovea with
surrounding background information, stitching together
successive high-resolution focal points into a complete visual
scene. In the absence of targets in the ROI, the brain initiates
saccades, rapid eye movements, to scan the environment,
bringing new ROI into the visual field to acquire more
information.

Inspired by this efficient visual mechanism, a novel ROI-
based feedback design is proposed, as illustrated in Fig. 2.
Building on the process outlined in Section II.A, the first
interpolated frame generated by the system serves as the
baseline for feedback. Due to the natural movement of the
capsule endoscope within the gastrointestinal tract, driven by
peristalsis, the same ROl area set by the image sensor
captures different image details over time. As the image
sensor continues to collect new ROI data, this information is
used to generate subsequent interpolated frames, which are
then compared to the baseline. By comparing the newly
acquired ROI data with the baseline, the system performs
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Fig. 4. (a) The structure of Gated CNN block. (b) The structure of Gated
Corner Block.

visual integration, stitching together the ROI regions to form
a more comprehensive image over time.

This process continues until the overlap between the newly
captured ROI and the baseline ROI falls below a predefined
threshold, set at 0.5 in this study. At this point, the system
provides feedback to the image sensor, prompting it to switch
back to full-view image capture to re-detect lesion areas,
mimicking the saccadic movement of the human eye to
rapidly scan new regions of the visual field and refocus on
areas of interest, thereby closing the loop.

This dynamic feedback mechanism leverages ROI-based
feedback and visual integration to continuously update and
incorporate high-resolution information while adapting to
changes in the capsule position and environment. By
dynamically stitching high-resolution ROI data and making
adjustments only when necessary, the system eliminates the
need for frequent reconfiguration of the image sensor. This
approach ensures efficient adaptation to capsule movement
while maintaining high-quality imaging for accurate and
reliable diagnosis.

I1l. GATED CORNER PROPOSAL NETWORK

In this work, only bounding box detection is needed, and
most existing object detection algorithms, such as YOLO, are
overly computationally intensive. Therefore, we adopt a
strategy inspired by the CornerNet architecture [15], dividing
the process into feature extraction and corner proposal as
illustrated in Fig. 3.

A. Conventional Image Preprocessing

RGB images combine both color and brightness
information, making it challenging for algorithms to isolate
critical structural details like texture, edges, and shading
necessary for lesion identification. This often reduces
sensitivity to subtle variations in brightness and contrast,
which are key indicators of abnormalities in medical imaging.



[18] [19] Proposed
Al model DSCNN Mask R-CNN | PoolFormer +
GCRN
Input Size 240%240*3 512*512*3 500*500*3
Onboard
Memory 3.2MB NR 0.54MB
Usage
Quantization INT8 NA INT8
FOV (degree) 140 130 160
Pixel Density
(PPD) 91.4 98.5 320
Frame Rate
2 2 9.58
(fps)
RF module BLE BLE BLE
Bandwidth
Requirement 60Kpbs 273Kbps 1248Kbps

N.R.: Not reported
Fig. 5. The comparative analysis of the relative state-of-the-art capsule
endoscope solutions.

To address this challenge, once the capsule endoscope
transmits compressed images of suspected lesions, the system
undergoes several preprocessing steps to enhance ROI
detection. The image is first transformed into the Lab color
space, where the luminance, L channel, is extracted to focus
specifically on brightness and contrast variations, which are
often more indicative of structural abnormalities. Sobel edge
detection is then applied to the L channel to highlight
significant edges and transitions, such as lesion boundaries or
structural changes in the gastrointestinal tract, providing
valuable spatial cues for accurate ROI localization. Finally,
as shown in Fig. 3, the edge-detected L channel is
concatenated with the original RGB and L images to form the
input for the neural network, effectively integrating high-
level contextual information with low-level structural details
for improved accuracy and robustness in ROI detection.

B. Gated U-Net Feature Extraction

Compared to the Hourglass module used in CornerNet, the
U-Net architecture, as illustrated in Fig. 3, is employed for
feature extraction due to its skip connections between the
encoder and decoder layers [16]. These skip connections
facilitate the transfer of detailed spatial information to the
upsampling path, preserving fine-grained details and
enhancing localization accuracy. Moreover, U-Net
effectively captures features at multiple scales, making it
well-suited for both localization and segmentation tasks,
which leads to more precise bounding box detection in
medical imaging.

Further improvement is achieved by replacing the standard
U-Net blocks with GatedCNN blocks shown in Fig. 4(a) [17].
GatedCNN blocks introduce learnable gating mechanisms
that adaptively allow relevant features to pass through while
filtering out unnecessary information. The mathematical
formulation is described as

g,i,¢c = split(FC;(BN(x)))

y = ReLU(g) © cat(i, conv(c))
z=x+FC,(y)

where x is the input features, z is the output features and
g,i,c are gate features, non-convolutional features, and
convolutional features, respectively. BN(-) is the batch
normalization layer, FC(-) is the fully-connected layer,
conv(-) is the convolutional layer and ReLU(:) is the
activation layer. split(-) and cat(-) are the split and
concatenate operations.

This enhances the network ability to focus on lesion areas,
improving the accuracy of bounding box detection. Moreover,
GatedCNN blocks reduce noise and irrelevant background
features, which is particularly important in medical imaging
where images often contain artifacts or non-informative
regions, resulting in a cleaner and more reliable feature
representation.

C. Gated Corner Block

The corner block incorporates the concept of corner
pooling [14], which captures contextual information by
pooling features along horizontal and vertical directions to
emphasize the edges of objects. As illustrated in Fig. 4(b),
this structure is implemented as the gated corner block.

To efficiently determine corner positions, we modified the
output heatmap to generate only the necessary components: a
heatmap for the top-left corner, offsets in the x and y
directions, and similarly for the bottom-right corner. This
results in a total of six output channels for the heatmap,
optimized for precise and rapid corner localization.

IV. SIMULATION RESULTS AND DISCUSSION

We developed a prototype PCB for a wireless capsule
endoscope to verify the functionality and dimensions of our
system. The maximum diameter of the entire system is 10
mm, requiring all components on the PCB to fit within this
constraint. The system is primarily composed of four parts: a
high-resolution camera (OV5640), a Bluetooth BLE wireless
communication module (NRF52840), a high-performance
MCU (STM32H743 series), and a wireless power reception
coil.

We chose the 5SMP OV5640 to provide a higher pixel
density under the same field of view (FOV) and viewing
distance. This allows us to leverage our proposed retina-like
ROI algorithm to enhance the resolution of the lesion areas
without increasing the demand for wireless bandwidth. The
MCU we selected is the STM32H743. This MCU is equipped
with an 8-bit JPEG codec module, enabling real-time
compression of images captured by the OV5640 to reduce
bandwidth requirements. Additionally, it features 1IMB of on-
chip cache, providing sufficient resources for running the
retina-like ROI algorithm and a lightweight lesion detection
model. The NRF52840 module is a low-power Bluetooth
communication module with a compact package size of just
4 x4 mm. Based on our simulation validation, it can achieve
a maximum data transmission rate of 1248 KBps for both
image and control signals. All simulations were conducted
based on the aforementioned hardware resources.



The neural network training was conducted using two
specified models, leveraging an Intel 13600KF CPU and an
RTX 3060Ti GDDR6X GPU with the PyTorch framework.
For the lesion classification model, the primary focus was on
recall, as correctly identifying positive cases is critical in
medical imaging applications. The edge detection model
achieved a recall of 99.88%, demonstrating its effectiveness
in accurately identifying potential lesions. The precision is
99.40%. For the ROI detection model, the evaluation
emphasized the overlap ratio between the predicted and
ground truth regio ns. The overall mean Intersection over
Union (mIOU) for the system reached 0.804, further
validating its robustness and accuracy in both lesion detection
and ROI localization tasks.

To benchmark the proposed system, we compared its
simulation performance against state-of-the-art capsule
endoscope solutions, as shown in Fig. 5. As depicted in the
figure, our algorithm and onboard lesion detection model
require only 0.54 MB of memory, which is 83.125% smaller
than the system in [18]. This allows our entire system to
operate based on near-memory computing, eliminating the
need for DRAM access and, consequently, reducing both
system latency and power consumption. Furthermore, with
the integration of a high-resolution CMOS sensor, our
system's pixel density is approximately three times greater
than that of the systems in [18] and [19], providing
significantly clearer visuals. The enhanced resolution of the
lesion areas will greatly improve diagnostic efficiency and
accuracy for healthcare professionals. Thanks to the closed-
loop ROI algorithm, we can prioritize imaging and data
transmission of the lesion regions with higher pixel density.
Under the assumption that the lesion region is confined
within a 500 <500 pixel box, the entire system can achieve
9.58 fps, leveraging the maximum achievable data rate of the
NRF52840.

The proposed Fovea-Inspired Closed-Loop Edge-Al
(FICE) system addresses longstanding challenges in wireless
capsule endoscopy by significantly improving image quality,
frame rate, and power efficiency. Validated through the
HyperKvasir dataset, the system achieved a diagnostic recall
and precision of 99.88% and 99.40% respectively with edge-
Al and a mean Intersection over Union (mIOU) of 0.804 in
Kvasir SEG dataset, demonstrating its effectiveness in
optimizing diagnostic precision. Compared to prior solutions,
which often compromise image quality or frame rate to
conserve energy, the FICE system leverages lightweight
edge-Al and Gated Corner Proposal Networks to deliver
superior lesion localization and energy efficiency. This
advancement enhances the effectiveness of non-invasive
gastrointestinal diagnostics and surgeries, while also paving
the way for more advanced medical solutions. However,
limitations include the need for further hardware validation,
reliance on a single dataset, and predefined thresholds that
may lack flexibility in diverse clinical contexts. Future
research should expand testing across broader datasets, refine
the feedback mechanism for greater adaptability, and explore
real-time clinical implementation to ensure broader
applicability and reliability.

V. CONLUSION

In this work, we introduced a Fovea-Inspired Closed-Loop
Edge-Al (FICE) system that draws inspiration from the
human eye’s fovea mechanism and leverages lightweight
transformer-based onboard lesion detection along with a
Gated Corner Proposal Network for precise bounding-box
localization. Our core contribution lies in capturing and
transmitting high-resolution data selectively when a lesion is
detected, significantly reducing energy consumption while
preserving diagnostic accuracy. Experimental results on the
HyperKvasir dataset demonstrate a 99.88% recall and a
precision of 99.40% in lesion detection and an mIOU of 0.804
for ROI localization, while achieving 9.58 fps with 320 pixel
density under a maximum data transmission rate of 1248
KBps, underscoring the system’s reliability and efficiency in
balancing image resolution, power usage, and transmission
rate. Beyond improving clinical decision-making by ensuring
targeted imaging, FICE also sets the stage for more advanced,
closed-loop WCE solutions that incorporate adaptable Al-
driven feedback. Future research will involve integrating more
advanced wireless modules, expanding testing to diverse
datasets, and exploring real-world clinical deployment to
further validate and refine this innovative approach.
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